NEUMANN PROBLEM FOR NON-DIVERGENCE ELLIPTIC AND PARABOLIC EQUATIONS WITH BMOx COEFFICIENTS IN WEIGHTED SOBOLEV SPACES

نویسندگان

  • HONGJIE DONG
  • DOYOON KIM
  • HONG ZHANG
  • H. ZHANG
چکیده

We prove the unique solvability in weighted Sobolev spaces of non-divergence form elliptic and parabolic equations on a half space with the homogeneous Neumann boundary condition. All the leading coefficients are assumed to be only measurable in the time variable and have small mean oscillations in the spatial variables. Our results can be applied to Neumann boundary value problems for stochastic partial differential equations with BMOx coefficients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Sobolev Spaces and Degenerate Elliptic Equations

In the case ω = 1, this space is denoted W (Ω). Sobolev spaces without weights occur as spaces of solutions for elliptic and parabolic partial differential equations. In various applications, we can meet boundary value problems for elliptic equations whose ellipticity is “disturbed” in the sense that some degeneration or singularity appears. This “bad” behaviour can be caused by the coefficient...

متن کامل

Local W -regularity Estimates for Weak Solutions of Parabolic Equations with Singular Divergence-free Drifts

We study weighted Sobolev regularity of weak solutions of nonhomogeneous parabolic equations with singular divergence-free drifts. Assuming that the drifts satisfy some mild regularity conditions, we establish local weighted Lp-estimates for the gradients of weak solutions. Our results improve the classical one to the borderline case by replacing the L∞-assumption on solutions by solutions in t...

متن کامل

On The Sobolev Space Theory of Parabolic and Elliptic Equations in C1 Domains

Existence and uniqueness results are given for secondorder parabolic and elliptic equations with variable coefficients in C domains in Sobolev spaces with weights allowing the derivatives of solutions to blow up near the boundary. The “number” of derivatives can be negative and fractional. The coefficients of parabolic equations are only assumed to be measurable in time.

متن کامل

On Linear Elliptic and Parabolic Equations with Growing Drift in Sobolev Spaces without Weights

We consider uniformly elliptic and parabolic second-order equations with bounded zeroth-order and bounded VMO leading coefficients and possibly growing first-order coefficients. We look for solutions which are summable to the p-th power with respect to the usual Lebesgue measure along with their first and second-order derivatives with respect to the spatial variable.

متن کامل

Parabolic and Elliptic Equations with Vmo Coefficients

An Lp-theory of divergence and non-divergence form elliptic and parabolic equations is presented. The main coefficients are supposed to belong to the class V MOx, which, in particular, contains all functions independent of x. Weak uniqueness of the martingale problem associated with such equations is obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015